Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:
In mathematics, the Mittag-Leffler function is a special function, a complex function which depends on two complex parameters and . It may be defined by the following series when the real part of is strictly positive:
where is the gamma function. When , it is abbreviated as . For , the series above equals the Taylor expansion of the geometric series and consequently .
In the case and are real and positive, the series converges for all values of the argument , so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler. This class of functions are important in the theory of the fractional calculus.
For , the Mittag-Leffler function is an entire function of order , and is in some sense the simplest entire function of its order.
The Mittag-Leffler function satisfies the recurrence property (Theorem 5.1 of )
from which the Poincaré asymptotic expansion
follows, which is true for .